
ENHANCED ANT COLONY SYSTEM

BASED ON RASA ALGORITHM IN GRID

SCHEDULING

D.Maruthanayagam

Associate Professor, MCA Department, Gnanamani Collge of Technology, Namakkal, Tamilnadu, India

Dr. R.Uma Rani

Associate Professor, Department of Computer Science, Sri Sarada College for Women, Salem,

Tamilnadu, India

ABSTRACT:

 This paper, proposes an enhanced ant colony

scheduling algorithm combined with the concept of

RASA. The Grid Environment has various operating

systems, hardware, and software, different storage

capacities, CPU speeds, network connectivities and

technologies. Deployment is a very important phase as it

bridges the gap between the user sytem (the resourses)

and the grid (the resources).The first step for this to

select a set of computers and a network connections

(switching, routers, Ethernet, Myrinet Etc.,) for an

application. A task algorithm from RASA first

estimates the completion time of the tasks on each of the

available grid resources and then applies the Max-min

and Min-min algorithms. Allocation of resources to a

large number of jobs in a grid computing environment

is more difficulty than in network computational

environments. Resources to jobs will be allotted by

resource discovery and filtering automatically which is

composed of the selection of resources, idea specific

scheduling and job submission. This algorithm is

evaluated using the simulated execution times for a grid

environment.

Key words: Grid Computing, Job Scheduling, Heuristic

Algorithm, Load Balancing, scheduling algorithm,

simulation, ant algorithm.

I. INTRODUCTION

 Grid environment is a distributed environment

including different processors with various

capabilities. One of the most important issues in

resources is the problem of job scheduling. In most of

the works accomplished in this field the purpose is

finding an appropriate scheduling which minimizes

the total tardiness time. Schedulers are to be selected

in order to minimize the mean waiting time of

processes in queues and also the mean length of

queues [1]. The efficient scheduling of jobs on Grid

systems is clearly critical because long wait time or

queue's long length leads to grate waste of

computational resources and also leads to finalization

of deadline of some processes [2]. There are

relatively a large number of task scheduling

algorithms to minimize the total completion time of

the tasks in distributed systems [3]. Actually, these

algorithms try to minimize the overall completion

time of the tasks by finding the

most suitable resources to be

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1659

allocated to the tasks. It should be noticed that

minimizing the overall completion time of the tasks

does not necessarily result in the minimization of

execution time of each individual task.

 Two well known examples of such algorithms

are Min-min and Max-min. These two algorithms

estimate the execution and completion times of each

of the tasks on each of the grid resources [4]. The

Min-Min-Average algorithm (MMA) for scheduling

transaction-intensive grid workflows involving

considerable communication overheads. First, we

establish a fundamental design which can provide

nearest neighbours, i.e., the nodes which have the

highest network transmission speed with the specific

node, for joint scheduling planning, and use real-time

information to track the change of network

transmission speed so that the scheduling can always

be adapted to the current network situation

automatically. Due to this adaptation, the

communication time can be decreased significantly.

It also can make the scheduling algorithm adapt to

the change of network transmission speed

dynamically [5]. The Max-Min-Average algorithm

(MMA) for scheduling found during iteration or

during the run of the algorithm, after each iteration

only one single job adds with instruction and speed

computes. This job may be the one which found the

best solution in the current iteration or the one which

found the best solution from the beginning of the

trial. To avoid stagnation of the search, the range of

possible best resourse’s (instruction and speeds) on

each solution component is limited to an interval

[min, max] [6].

 The algorithm, RASA (Resource Aware

Scheduling Algorithm), applies the Max-min and

Min-min strategies alternatively to assign tasks to the

resources. RASA firstly estimates the completion

time of the tasks on each of the available grid

resources and then applies the Max-min and Min-min

algorithms. The chosen job is then allocated to the

best selected ant of each iteration. This process is

repeated until all jobs have been scheduled and a

complete solution has been built. Each ant in the

colony builds a solution in this manner in each

iteration. Once all the ants have built a solution the

pheromone trail update procedure is performed.

 It was observed in the test runs that the ants

often take some time to start building good solutions

because it takes a few iterations before the

pheromone trail is populated with good job-processor

pairings. After that, ant systems where

algorithmically enunciated for optimization in

problems like the salesman traveller and others. Ants

are social beings with high structured colonies based

on very simple individual behavior. Ants smell

pheromone and when choosing their way, they tend

in probability to the paths marked with stronger

pheromone concentrations. When the time pass the

pheromone concentration decrease. Repeating same

behavior they compose optimized trails that are

dynamically defining and they use to find food

sources and their nest.

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1660

II. MATERIALS & METHODS

 Various algorithms have been designed to

schedule the jobs in computational gird. The most

commonly used algorithms are MET, MCT, Min-Min,

Max-Min and ACO.

A. Minimum Execution Time (MET)

 The first available machine is assigned a job

with the smallest execution time. It neither considers

the ready time nor the current load of the machine and

also the availability of the resources at that instant of

time is not taken into account. The resources in grid

system have different computing power. Allocating all

the smallest tasks to the same fastest resource

redundantly creates an imbalance condition among

machines. Hence this solution is static. Since the

number of resources is much less than the number of

tasks, the tasks need to be scheduled on the resources

in a certain order. Many of the batch mode

algorithms intend to provide a strategy to order and

map these parallel tasks on the resources, in order to

complete the execution of these many processor tasks

at earliest time. They can also be applied to optimize

the execution time of a workflow application which

consists of lot of independent parallel tasks with a

limited number of resources [7].

B. Minimum Completion Time (MCT)

 It uses the ready time of the machine to

calculate the job’s completion time (ready time of the

machine + execution time of the job). It calculates the

completion time of current job in the earliest available

machines. From the list, the job with smallest

completion time is selected and is assigned to that

machine. This means the assigned job may have a

higher execution time than any other job. This

algorithm calculates the completion time of current

unfinished job in only one earliest available node.

But, the same job may be completed in lesser time in

some other machine which is available at that time.

C. Min-Min

 It starts with a set of unmapped tasks. The

minimum completion time of each job in the

unmapped set is calculated. This algorithm selects the

task that has the overall minimum completion time

and assigns it to the corresponding machine. Then the

mapped task is removed from the unmapped set [9].

The above process is repeated until all the tasks are

mapped. When compared with MCT, Min-Min

considers all the unmapped tasks during their mapping

decision. The smaller makespan can be obtained when

more tasks are assigned to machines that complete

them the earliest and also execute them the fastest.

D. Max-Min

 First it starts with a set of unmapped tasks. The

minimum completion time of each job in the

unmapped set is found. This algorithm selects the task

that has the overall maximum completion time from

the minimum completion time value and assigns it to

the corresponding machine. The mapped task is

removed from the unmapped set. The above process is

repeated until all the tasks are mapped. On

comparison with MCT, Max-Min considers all

unmapped tasks during their mapping decision. The

Max-Min may produce a balanced load across the

machine. When compare to Max-Min, Min-Min is the

best one.

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1661

E. ACO

 Ant colony optimization (ACO) was first

introduced by Marco Dorigo as his Ph.D. thesis and

was used to solve the TSP problem [10]. ACO was

inspired by ant’s behavior in finding the shortest path

between their nests to food source. Many varieties of

ants deposit a chemical pheromone trail as they move

about their environment, and they are also able to

detect and follow pheromone trails that they may

encounter. With time, as the amount of pheromone in

the shortest path between the nest and food source

increases, the number of ants attracted to the shortest

path also increases. This cycle continues until most of

the ants choose the shortest path. As this work is a

cooperative one and none of the ants could find the

shortest path separately, Max-Min Ant System is

based on the basic ACO algorithm but considers low

and upper bound values and limits the pheromone

range to be between these values. Defining those

values, lets MMAS avoid ants to converge too soon

in some ranges. In ACO one ant participate in each

iteration search and also there is no pheromone

evaporation rule. Hence the ant algorithm is suited

for usage in Grid computing task scheduling.

 In the grid environment, the algorithm can

carry out a new task scheduling by experience,

depending on the result in the previous task

scheduling. In the grid computing environment, this

type of scheduling is very much helpful. Hence this

paper proposes the ant algorithm for task scheduling

in Grid Computing.

F. RASA (Resource Aware Scheduling Algorithm)

in GRID

 The algorithm builds a matrix C where Cij

represents the completion time of the task Ti on the

resource Rj. If the number of available resources is

odd, the min-min strategy is applied to assign the first

task, otherwise the max-min strategy is applied. The

remaining tasks are assigned to their appropriate

resources by one of the two strategies, alternatively.

For instance, if the first task is assigned to a resource

by the min-min strategy, the next task will be

assigned by the max-min strategy. In the next round

the task assignment begins with a strategy different

from the last round. For instance if the first round

begins with the max-min strategy, the second round

will begin with the min-min strategy. Jobs can be

farmed out to idle servers or even idle processors.

Many of these resources sit idle especially during off

business hours. Policies can be in places that allow

jobs to only go to servers that are lightly loaded or

have the appropriate amount of memory/processors

characteristics for the particular application. In this

experimental results show that if the number of

available resources is odd it is preferred to apply the

min-min strategy the first in the first round otherwise

it is better to apply the max-min strategy the first.

Alternative exchange of the min-min and max-min

strategies results in consecutive execution of a small

and a large task on different resources and hereby,

the waiting time of the small tasks in Max-min

algorithm and the waiting time of the large tasks in

Min-min algorithm are ignored. As RASA consist of

the max-min and min-min algorithms and have no

time consuming instruction, the time complexity of

RASA is O(���) where m is the number of resources

and n is the number of tasks (similar to Max-min and

Min-min algorithms) [4].

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1662

III. PROPOSED WORK

 The grid scheduler finds out the better

resource for a particular job and submits that job to

the selected systems. The grid scheduler does not

have control over the resources and also on the

submitted jobs. Any machine in grid can execute any

job, but the execution time differs. The resources are

dynamic in nature. As compared with the expected

execution time, the actual time may vary when

running the jobs in the allocated resources. So, the

job placement has been determined according to the

scheduling intension and then data move operations

have been initiated for necessary task to transfer

relevent machines. Processors are claimed after all

job components have been placed. In between the job

placement time and job claiming time the processors

could be allocated to some other job and if this

happens the job component can be re-placed on

another task.

 The time between job placement time and job

claiming time is decreased by a fixed amount after

every claiming failure. A job can fail for various

reasons, e.g., badly configured or faulty nodes,

hardware, and software errors. During this scheduling

failed, job and counts the number of failures of the

supposedly faulty node. When a job fails a previously

set number of times then the job is removed and not

rescheduled [8]. If the error count of a node exceeds a

fixed number then that node is not considered by the

co-allocator anymore. The states at the bottom depict

the happy flow, i.e., the states a job goes through if

nothing fails. Different errors occur at various states

of a job. Depending on the kind of error, this system

will chooses to end the job altogether or to retry the

job.

 The resubmit the job immediately done too

quickly from new task of a machine, due to failure

cannot claim its network. We also wait for job to

finish so it can properly execute its clean up phase in

which it removes the temporarily created

works.When a job request with an incomplete or

incorrect network specification is submitted the job

will naturally, not be resubmitted and will exit

immediately. Once all components are placed the

claiming phase starts. In contrast to other jobs this is

done once for the whole job, i.e., the components do

not get claimed independently.

 The claiming is done as a job submission

request and can fail for many different reasons, e.g.,

misspelled or non-existent executable name, input

jobs not present, local resource manager unavailable,

etc. Some of these errors could be caused by the

system itself and could be a local phenomenon. In

this case the job can be retried. When a new

component is successfully submitted, it is merged

into the job component list of the malleable job. The

first step of resource discovery in job scheduling is to

determine the set of resources that the user

submitting the job has access to, in this regard,

computing over the grid is no different from remotely

submitting a job to a single task: without

authorization to run on a resource the job will not

run. At the end of this step the user will have a list of

machines or resources to which he or she has access.

The main difference that grid computing lends to this

problem is sheer numbers [9]. It is now easier to get

access to more resources, although equally difficult

to keep track of them. Also, with current stage

implementations, a user can often find out the status

of many more machines than what he or she has

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1663

accounts on. As the number of resources grows, it simply does not make sense to examine those

resources that are not authorized for use.

 When a user is performing scheduling at the

Grid level, the most common solution to this problem

is to simply have a list of account names, machines,

and passwords written down somewhere and kept

secure. While the information is generally available

when needed, this method has problems with fault

tolerance and scalability for few stages, to proceed in

resource discovery, the user must be able to specify

some minimal set of job requirements in order to

further filter the set of feasible resources. The set of

possible job requirements can be very broad and will

vary significantly between jobs. It may include static

details (the operating system or hardware for which a

binary of the code is available, or the specific

architecture for which the code is best suited) as well

as dynamic details (for example, a minimum RAM

requirement, connectivity needed, time space

needed). Some schedulers are at least allowing for

better coarse-grained information about the

applications fulfills [16].

 The grid scheduler’s aim is to allocate the jobs

to the available nodes. The best match must be found

from the list of available jobs to the list of available

resources. The selection is based on the prediction of

the computing power of the resource. The ant based

algorithm is evaluated using the simulated execution

times for a grid environment. Before starting the grid

scheduling, the expected execution time for each task

on each machine must be estimated and represented

by an ET matrix. Each row of ET matrix consists of

the estimated execution time for a job on each

resource and every column of the ET matrix is the

estimated execution time for a particular resource of

list of all jobs in the job pool.

 Here the algorithm, rj denotes the expected

time which resource Rj will become ready to execute

a task after finishing the execution of all tasks

assigned to it. First, the Cij entries are computed

using the ETij (the estimated execution time of task Ti

on resource Rj) and rj values. For each task Ti, the

resource that gives the earliest expected completion

time is determined by scanning the ith row of the C

matrix (composed of the Cij values). The task Tk that

has the minimum earliest expected completion time is

determined and then assigned to the corresponding

resource from ACO algorithm.

Cij=ETj+rj �(1)

 Specification of the resources is according to

resources speed (MIPS) and bandwidth (Mbps),

specification of the tasks depends on instructions and

data (MIPS) completion time of the tasks on each of

the resources .Tasks/Resources R1, R2 and R3 four

tasks T1, T2, T3 and T4 are in the meta-task Mv and

the grid manager is supposed to schedule all the tasks

within Mv on three resources R1, R2 and R3. Table 1

is shown the specification of the resources and tasks.

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1664

TABLE 1: SPECIFICATION OF THE RESOURCES AND TASKS.

 Tasks

Instructions & data (MIPS)

with ready time
Instructions & data (MIPS) with excuted time

R1 R2 R3 R1 R2 R3

T1

0.44

0.66

0.88

10.88

12.44

14.66

T2

10.88

12.48

14.68

42.66

60.22

62.66

T3

42.68

60.64

64.22

68.66

78.44

74.44

T4

.

68.68

82.22

92.42

98.44

94.44

102.22

Execution of ACO System (Old)

No of job & resources: 4 3

Jobs: T1

Jobs: T2

Jobs: T3

Jobs: T4

Resourse: R1

Resourse: R2

Resourse: R3

--

 Workload and timing allotments

--

 T1 and R1 ready time: 0.44

 T1 and R1 expected time: 10.88

 T1 and R2 ready time: 0.66

 T1 and R2 expected time: 12.44

 T1 and R3 ready time: 0.88

 T1 and R3 expected time: 14.66

 T2 and R1 ready time: 10.88

 T2 and R1 expected time: 42.66

 T2 and R2 ready time: 12.48

T2 and R2 expected time: 60.22

 T2 and R3 ready time: 14.68

 T2 and R3 expected time: 62.66

 T3 and R1 ready time: 42.68

 T3 and R1 expected time: 68.66

 T3 and R2 ready time: 60.64

 T3 and R2 expected time: 78.44

 T3 and R3 ready time: 64.22

 T3 and R3 expected time: 74.44

 T4 and R1 ready time: 68.68

 T4 and R1 expected time: 98.44

 T4 and R2 ready time: 82.22

 T4 and R2 expected time: 94.44

 T4 and R3 ready time: 92.42

 T4 and R3 expected time: 102.22

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1665

--

 n ij values :

--

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

--

 Trail level values:

--

 0.09

 0.08

 0.07

 0.02

 0.02

 0.02

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

--

 CTij values:

--

 11.76

 13.32

 15.54

 57.34

 74.90

 77.34

 132.88

 142.66

 138.66

 190.86

 186.86

 194.64

--

Task running compute

--

 [0][0] 1.00

 [0][1] 0.45

 [0][2] 0.26

 [1][0] 0.09

 [1][1] 0.06

 [1][2] 0.05

 [2][0] 0.05

 [2][1] 0.04

 [2][2] 0.04

 [3][0] 0.03

 [3][1] 0.03

 [3][2] 0.02

--

 Probability Makespan time with ETij

--

 [0][0] 100.00

 [0][1] 41.98

 [0][2] 21.53

 [1][0] 2.88

 [1][1] 1.35

 [1][2] 1.12

 [2][0] 1.07

 [2][1] 0.77

 [2][2] 0.77

 [3][0] 0.51

 [3][1] 0.52

 [3][2] 0.40

--

 Makespan time with CTij

--

 [0][0] 100.00

 [0][1] 45.51

 [0][2] 26.15

 [1][0] 7.62

 [1][1] 5.23

 [1][2] 4.40

 [2][0] 2.89

 [2][1] 2.49

 [2][2] 2.27

 [3][0] 1.88

 [3][1] 1.79

 [3][2] 1.53

 Job scheduling system is the most important part

of grid resource management system [11]. The

scheduler receives the job request, and chooses

appropriate resource to run that job. In this paper, the

formulation of job scheduling is based on the

expected time to compute (ETC) matrix. Meta-task is

defined as a collection of independent task (i.e. task

doesn’t require any communication with other tasks).

Tasks derive mapping statically. For static mapping,

the number of tasks, t and the number of machines, m

is known a priori. ETC (i, j) represents the estimated

execution time for task ti on machine mj. The

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1666

expected completion time of the task ti on machine

mj is ct (ti, mj) = ready (i) + ETC(ti, mj) ready (i) is

the machine availability time, i.e. the time at which

machine mj completes any previously assigned tasks

[12]. The new algorithm is proposed and compare

with existing algorithm also presented here.

 It is start from a mechanism for defining the

grid nodes as well as the input data sources and

output data locations load balancing scheme to

improve the scaling efficiency of the parallel

computation and activity of each node in the grid. To

collection of partial result sets from the nodes in the

grid and then back to a centralized location. In this

method, we achieve the optional additional analysis

from the collected results.

 The result of the algorithm will have four

values (task, machine, starting time, executed

completion time). Then the new value of free(j) is the

starting time plus ETij. A heuristic function is used to

find out the best resource

 � ij =1 / free (j) � (2)

 Using the formula 3 the highest priority

machine is found which is free earlier. Here four ants

are used. Each ant starts from random resource and

task (they select ETij randomly jth resource and ith

job). All the ants maintain a separate list. Whenever

they select next task and resource, they are added into

the list. At each iteration, the ants calculate the new

pheromone level of the elements of the solutions is

changed by applying following updating rule

Tij = 1 / Etij � (3)

 The scheduling algorithm is executed

periodically. At the time of execution, it finds out the

list of available resources (processors) in the grid

environment, form the ET matrix and start

scheduling. When all the scheduled jobs are

dispatched to the corresponding resources, the

scheduler starts scheduling over the unscheduled task

matrix ET. This is guaranteed that the machines will

be fully loaded at maximum time. The Pij’s value

has been modified to include the ETij is modified to

the following equation

Pij = Tij � ij(1/ETij) / �Tij � ij(1/ ETij)� (4)

 Further more, instead of adding ETij,

execution time of the ith job by the jth machine

(predicted), in the calculation of probability

Pij = Tij � ij / � Tij � ij � (5)

The proposed algorithm

for each tasks Ti and resources Rj allocations

Compute approximate Cij=Ej+rj to ant’s resource allocate end for

do until all tasks in Mv are mapped

 for each tasksTi and Rj

 if the number of resources is even then

 find the resource free times

 for each task in Mv find the earliest completion

 time and the resource that obtains it

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1667

 find the task Tk with the

 minimum earliest completion time

 find the task Tk with the

 maximum earliest completion time

 assign task Tk to the resource Rl that gives

 the better completion time from min and max

 Choose place p randomly from set the resources

Suitable for event e, according to probabilities

 end for

 for each no of resource & tasks (ants)

 best of C and Citeration best with Tmin and Tmax

end for

end for

end while

Execution of proposed System

No of job & resources: 4 3

Jobs: T1

Jobs: T2

Jobs: T3

Jobs: T4

Resourse: R1

Resourse: R2

Resourse: R3

--

 Workload and timing allotments

--

 T1 and R1 ready time: 0.44

 T1 and R1 expected time: 10.88

 T1 and R2 ready time: 0.66

 T1 and R2 expected time: 12.44

 T1 and R3 ready time: 0.88

 T1 and R3 expected time: 14.66

 T2 and R1 ready time: 10.88

T2 and R1 expected time: 42.66

 T2 and R2 ready time: 12.48

 T2 and R2 expected time: 60.22

 T2 and R3 ready time: 14.68

 T2 and R3 expected time: 62.66

T3 and R1 ready time: 42.68

 T3 and R1 expected time: 68.66

 T3 and R2 ready time: 60.64

 T3 and R2 expected time: 78.44

 T3 and R3 ready time: 64.22

 T3 and R3 expected time: 74.44

 T4 and R1 ready time: 68.68

 T4 and R1 expected time: 98.44

 T4 and R2 ready time: 82.22

 T4 and R2 expected time: 94.44

 T4 and R3 ready time: 92.42

 T4 and R3 expected time: 102.22

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1668

--

 n ij values :

--

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

--

--

Trail level values:

--

 0.09

 0.08

 0.07

 0.02

 0.02

 0.02

 0.01

 0.01

 0.01

 0.01

 0.01

 0.01

--

 CTij values:

--

 11.76

 13.32

 15.54

 57.34

 74.90

 77.34

 132.88

 142.66

 138.66

 190.86

 186.86

 194.64

--

 Min- Max Completion time:

 Min Completion time: 11.760000

 Max Completion time: 1.07374176.000000

--

 Task running compute

--

 [0][0] 1.00

 [0][1] 0.30

 [0][2] 0.21

 [1][0] 0.15

 [1][1] 0.10

 [1][2] 0.02

 [2][0] 0.02

 [2][1] 0.02

 [2][2] 0.01

 [3][0] 0.01

 [3][1] 0.01

 [3][2] 0.01

--

--

 Probability Makespan time with ETij

--

 [0][0] 100.00

 [0][1] 31.98

 [0][2] 11.53

 [1][0] 1.66

 [1][1] 0.25

 [1][2] 0.12

 [2][0] 0.03

 [2][1] 0.43

 [2][2] 0.33

 [3][0] 0.31

 [3][1] 0.26

 [3][2] 0.18

 Min- Max ET time:

 Min ET Time: 0.513769

 Max ET time: 1.0737417600.000000

--

 Makespan time with CTij

--

 [0][0] 100.00

 [0][1] 32.00

 [0][2] 21.56

 [1][0] 7.02

 [1][1] 5.00

 [1][2] 3.85

 [2][0] 2.84

 [2][1] 2.00

 [2][2] 1.52

 [3][0] 1.34

 [3][1] 1.22

 [3][2] 0.42

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1669

 This algorithm can be improved using some

form of operating systems, hardware, and software,

different storage capacities, CPU speeds, network

connectivities and technologies needs. In this method

we first find the problem resources and those total

execution times equal to the makespan of the

solution, and attempt to move or swap set of jobs

from the problem processor to another resource that

has the minimum and maximize of makespan as

compared with all other resources.[13]. After

applying the above local optimum technique, find out

the problem resource reduce time again, swap or

move some of the jobs from the resource for relevent

jobs.The search is performed on each problem

processor and continues until there is no further

improvement in the fitness value of the solution. The

following diagram (Fig 1) shows machine execution

time for the introduced mechanism.

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

Fig 1: 3x4 (resources and tasks) processing times for both ACO

& proposed Algorithm.

R2

R1

R3

0.44 10.88

42.68 68.68

42.66

68.66

82.22

60.64

12.48

102.22

0.88

14.68

64.22

92.42

98.44

10.88

12.44

60.22

78.44

94.44

14.66

62.66

74.44

0.66

Ready

Time(MIPS)

Ready

Time(MIPS)

Ready

Time(MIPS)

Expected

Time(MIPS)

Expected

Time(MIPS)

Expected

Time(MIPS)

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1670

 Using the Mv are mapped model, the

scheduling problems are number of independent jobs

to be allocated to the available grid resources [14].

Because of no preemptive scheduling, each job has to

be processed completely in a single machine.

Number of machines is available to participate in the

allocation of tasks. The workload of each job the

computing capacity of each resources (in MIPS) , m-

represents the ready time of the machine after

completing the previously assigned jobs of minimum

earliest completion time find the task Tk with the

maximum earliest completion time, where the

executed machines represents the n-number of jobs

and m-represents the number of machines.[15].

IV. RESULTS & DISCUSSION

 The proposed algorithm target on grids if the

number of available resources is odd, the min-min

strategy is applied to assign the first task, otherwise

the max-min strategy is applied. The remaining tasks

are assigned to their appropriate resources by one of

the two strategies, alternatively. For instance, if the

first task is assigned to a resource by the min-min

strategy, the next task will be assigned by the max-

min strategy. Alternative exchange of the min-min

and max-min strategies results in consecutive

execution of a small and a large task on different

resources and hereby, the waiting time of the small

tasks in max-min algorithm and the waiting time of

the large tasks in min-min algorithm are ignored. As

RASA consist of the max-min and min-min

algorithms and both have no time consuming

instructions. ACO and RASA algorithms incorporate

in which intend to optimize workflow execution

times on grids have been presented here. The

comparison of these algorithms in computing time,

applications and resources scenarios has also been

detailed. In dynamic grid environments this

information that can be retrieved from a many servers

includes operating system, processor type and speed,

the number of available CPUs and software

availability as well as their installation locations.

 The distributed monitoring system is designed

to track and forecast resource conditions. The n tasks

can obviously intercommunicate. A general model

should take into consideration that the

communication phase can happen at any time with

I/O phases. To overcome these diffculties our new

algorithm is proposed.

 In this method four ants are used. The number

of ants used is less than or equal to the number of

tasks. From all the possible scheduling lists find the

one having minimum makespan and uses the

corresponding scheduling list. Here three kinds of ET

matrices are formed, first one consists of currently

scheduled jobs and the next consists of jobs which

have arrived but not scheduled. The scheduling

algorithm is executed periodically. At the time of

execution, it finds out the list of available resources

(processors) in the grid environment, form the ET

matrix and start scheduling. When all the scheduled

jobs are dispatched to the corresponding resources,

the scheduler starts scheduling over the unscheduled

task matrix ET. This guarantes that the machines are

fully loaded at maximum time. The processing times

of both ACO and proposed algorithms are shown in

fig 2.

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1671

Fig 2: The processing times for both ACO & proposed Algorithm

 These exeution minimize the overall

completion time of the tasks by finding the most

suitable resources to be allocated to the tasks. It

should be noticed that minimizing the overall

completion time of the tasks does not necessarily

result in the minimization of execution time of each

individual task. The completion time of makespan for

both ACO and proposed algorithms are illustrated in

Fig 3 and Fig 4 respectively. Task is assigned to a

resource by the min-min strategy; the next task will

be assigned by the max-min strategy. In the next

round the task assignment begins with a strategy

different from the last round. For instance if the first

round begins with the max-min strategy, the second

round will begin with the min-min strategy. Jobs can

be farmed out to idle servers or even idle processors.

Many of these resources sit idle especially during off

business hours. Fig 5 is shown the compare the

completion times of makespan of ACO as well as

proposed algorithm. Policies can be in places that

allow jobs to only go to servers that are lightly loaded

or have the appropriate amount of

memory/processors characteristics for the particular

application.

Fig 3: The Completion time of makespan for ACO.

� ���� � � ������ �
�����

� �
�����

�� ���� � � ������ �

�����

� �

�����

�� ���� � �
�����

� �

�����

� �

�����

�� ������ �

�����

� �

�����

� �

�����

�� ������ �

�����

� �

	����

� �

�����

��
�����

� �

�����

� �

	����

� �

������

��

���

���

��

���

���

���

�� �� �
 ��

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

��

����

�

�

�

�

���

�����

�����

	��� ���
 ��� ���� ���� ���	 ���� ��	� ���
�

��

��

��

��

���

���

� �
 � � � 	 � � �� �� ��

�

�

�

�

�

�

�

�

�����	��

��������

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1672

Fig 4: The Completion time of makespan for proposed Algorithm.

Fig 5: Compare the Completion time of makespans for ACO &

Proposed Algorithm.

V. CONCLUSION

 This paper investigates chosen job had been

allocated to the best selected ant of each iteration.

This process is repeated until all jobs have been

scheduled and a complete solution has been built.

Each ant in the colony builds a solution, in this

manner in each iteration the searching of proper

resource allocation on each processing jobs. This

algorithm can find an optimal processor and network

for each machine to allocate a job that minimizes the

tardiness time of a job when the job is scheduled in

the system. The proposed scheduling algorithm is

designed to achieve high throughput computing in a

grid environment. Min-min and Max-min algorithms

are applicable in small scale distributed systems.

When the numbers of the large tasks are more than

the number of the tasks in a meta-task, the Min-min

algorithm can not schedule tasks, appropriately and

the makespan of the system gets relatively large. It

will be unlike the Min-min algorithm, the Max-min

algorithm attempts to achieve load balancing with in

resources by scheduling the large tasks prior to the

small ones. However, within a computational grid

���

�

�����

	��� �
��� ���� � ���� ��
� ���� �����

��

��

��

��

���

���

� �
 � � � 	 � � �� �� ��

�

�

�

�

�

�

�

�

�����	��

�������������

���

�

�����

	��� �
��� ���� � ���� ��
� ���� ����

���

�����

�����

	��� ���
 ��� ���� ���� ���	 ���� ��	� ���
�

��

��

��

��

���

���

� �
 � � � 	 � � �� �� ��

�

�

�

�

�

�

�

�

�����	��

���������

����

��������

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1673

environment high throughput is of great enhancement

of resouse allocation accorrding to (CPU, network

and operating system) system existing scheduling

algorithms in large scale distributed system’s cost of

the communication and many other cases open

problem in this area here we concentrate throughout

mechnisum of entire system needs .

REFERNCES

[1] SamanehHoseini Semnani, Kamran Zamanifar, Naser

Nematbakhsh “New Heuristic in Ant ColonyOptimization to Solve

Job Scheduling Problem in Grid”, Dept. of Computer Science,

University of Isfahan, Isfahan, Iran : 2009

[2] S_ Lorpunmanee, M_ Noor Sap, A_ Hanan Abdullah, and C_

Chompoo-inwai “An ant colonyOptimization for Dynamic Job

Scheduling in Grid Environment”, International Journal of

Computer and Information Science and Engineering, 2007.

[3] He, X., X-He Sun and G.V. Laszewski, 2003. QoS Guided

Min-min Heuristic for Grid Task Scheduling. Journal of Computer

Science and Technology, 18: 442-451.

[4] Saeed Parsa and Reza Entezari-Maleki RASA: A New Task

Scheduling Algorithm in Grid Environment World Applied

Sciences Journal 7 (Special Issue of Computer & IT): 152-160,

2009,ISSN 1818.4952

[5] Ke Liu1,2, Jinjun Chen1, Hai Jin2 and Yun Yang1 A Min-Min

Average Algorithm for Scheduling Transaction-Intensive Grid

Workflows, Swinburne University of Technology.

[6] Mr.K.Sankar1 and Dr. K.Krishnamoorthy2 MAX-MIN ANT

OPTIMIZER FOR PROBLEM OFUNCERTAINITY, K. Sankar et

al. / (IJCSE) International Journal on Computer Science and

EngineeringVol. 02, No. 03, 2010, 473-480

[7]M. Maheswaran, S. Ali, H.J.Siegel, D. Hensgen, and R. Freund.

Dynamic Matching andScheduling of a Class of Independent Tasks

onto Heterogeneous Computng Systems. In 8thHeterogeneous

Computing Workshop (HCW’99), Apr. 1999.

[8] J.Brevik, D.Nurmi, and R.Wolski, “Automatic Methods for

Predicting Machine Availability in Desktop Grid and Peerto- Peer

Systems”, In Proceedings of CCGRID’04, pp. 190- 199, 2004.

 [9]] A Heuristic Algorithm for Task Scheduling Based on Mean

Load1 Lina Ni1,2, Jinquan Zhang1,2, Chungang Yan1, Changjun

Jiang1 1 Department of Computer Science, Tongji University,

Shanghai, 2000-92, China.

[10] K. Kousalya and P. Balasubramanie,”To Improve Ant

Algorithm’s Grid Scheduling Using Local Search.

(HTTP://WWW.IJCC.US), VOL. 7, NO. 4, DECEMBER 2009

[11] E. Tsiakkouri et al., “Scheduling Workflows with Budget

Constraints”, In the CoreGRID Workshop on Integrated research

in Grid Computing, S. Gorlatch and M. Danelutto (Eds.),

Technical Report TR-05-22, University of Pisa, Dipartimento Di

Informatica, Pisa, Italy, Nov. 28-30, 2005, pages347-357.

[12]. J. D. Ullman, "NP-complete Scheduling Problems," Journal

of Computer and System Sciences, vol. 10, pp. 384-393, 1975.

[13]. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.

Maciejewski, "Task Mapping and Scheduling in Heterogeneous

Computing Environments Using a Genetic-Algorithm-Based

Approach," Journal of Parallel and Distributed Computing, vol. 47,

pp. 8-22, 1997.

[14] Szajda, D., Lawson, B., and Owen, J. Hardening Functions for

Large-Scale DistributedComputations. IEEE Symposium on

Security and Privacy, 2003, pp. 216-224.Vanderbei, R. Linear

Programming: Foundations and Extensions, Second

Edition.Norwell: Kluwer, 2001, pp. 136-141.

<http://www.princeton.edu/~rvdb/LPbook>Accessed 17 March

2006

[15] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. Models

of parallel applications with large computation and I/O

requirements. IEEE Trans. on Software Engineering, 28:286–

307, March 2002

[16] P. Cremonesi and C. Gennaro. Integrated performance models

for SPMD applications and MIMD architectures. IEEE Trans. on

Parallel and Distributed Systems, 13(12):1320–1332, 2002.

Authors Profile
D.Maruthanayagam received his

M.Phil, Degree from Bharathidasan

University, Trichy in the year 2005. He

has received his M.C.A Degree from

Madras University, Chennai in the year

2000. He is working as a Associate

Professor in Master of Computer

Applications Department, Gnanamani

College of Technology, Pachal,

Namakkal, Tamilnadu, India. His areas

of interest include Computer Networks,

Grid Computing and Mobile

Computing.

Dr.R.Uma Rani received her

Ph.D., Degree from Periyar

University, Salem in the year

2006. She is a rank holder in

M.C.A., from NIT, Trichy. She

has published around 40 papers

in reputed journals and national

and international conferences.

She has received the best paper

award from VIT, Vellore, Tamil

Nadu in an international conference.

She has done one MRP funded by UGC. She has acted

as resource person in various national and international

conferences. She is currently guiding 5 Ph.D., scholars. She has

guided 20 M.Phil, scholars and currently guiding 4 M.Phil,

Scholars. Her areas of interest include information security, data

mining, fuzzy logic and mobile computing.

D.Maruthanayagam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1659-1674

1674

